Bilinear Multipliers of Small Lebesgue spaces
نویسندگان
چکیده
Let $G$ be a locally compact abelian metric group with Haar measure $\lambda $ and $\hat{G}$ its dual $\mu ,$ ( G) is finite. Assume that$~1<p_{i}<\infty $, $p_{i}^{\prime }=\frac{ p_{i}}{p_{i}-1}$, $( i=1,2,3) $\theta \geq 0$. L^{(p_{i}^{\prime },\theta }( small Lebesgue spaces. A bounded measurable function $m( \xi ,\eta ) defined on $\hat{G}\times \hat{G}$ said to bilinear multiplier of type $[ (p_{1}^{\prime };(p_{2}^{\prime };(p_{3}^{\prime }] _{\theta }$ if the operator $B_{m}$ associated symbol $m$, \begin{equation} B_{m}(f,g) x) =\sum_{s\in \hat{G} }\sum_{t\in \hat{G}}\hat{f}(s) \hat{g}(t) m(s,t) \langle s+t,x\rangle \end{equation} defines from $L^{(p_{1}^{\prime \times L^{(p_{2}^{\prime into L^{(p_{3}^{\prime }(G) $. We denote by $BM_{\theta } [ space all multipliers }$. In this paper, we discuss some basic properties }[ give examples multipliers.
منابع مشابه
Lebesgue Spaces for Bilinear Vector Integration Theory
In this note we shall announce results concerning the structure of £^0^)> the space of 2s-valued functions integrable with respect to a measure m:H->L(E, F), where L(E,F) is the class of bounded operators from the Banach space E into the Banach space F. The bilinear integration theory introduced here is more restrictive than the one developed by Bartle [1], but it is general enough to allow a n...
متن کاملNotes on the Spaces of Bilinear Multipliers
A locally integrable function m(ξ, η) defined on R × R is said to be a bilinear multiplier on R of type (p1, p2, p3) if Bm(f, g)(x) = Z
متن کاملBilinear multipliers and transference
(defined for Schwarzt test functions f and g in ) extends to a bounded bilinear operator from Lp1 (R)×Lp2 (R) into Lp3 (R). The theory of these multipliers has been tremendously developed after the results proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν) = sign(ξ +αν) is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and each α∈R \...
متن کاملOn the boundedness of bilinear operators on products of Besov and Lebesgue spaces
We prove mapping properties of the form T : Ḃ11 p1 × L p2 → Ḃ22 p3 and T : Ḃ11 p1 × Ḃ α2,q2 p2 → L p3 , for certain related indices p1, p2, p3, q1, q2, α1, α2 ∈ R, where T is a bilinear Hörmander-Mihlin multiplier or a molecular paraproduct. Applications to bilinear Littlewood-Paley theory are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Mathematics
سال: 2021
ISSN: ['1303-6149', '1300-0098']
DOI: https://doi.org/10.3906/mat-2101-94